Seeing beauty and elegance in natural patterns and processes is a fundamental human pleasure. We have an admiration for the simple and perfect way things work and an enthusiasm to capture and replicate them.

The beauty of a vortex

The vortex is a particular object of fascination for those of us involved in design or engineering, because of its simplicity and power. Leonardo Da Vinci once said: 'simplicity is the ultimate sophistication' - and simplicity can take a lot of hard work for designers to achieve. Despite its elegant principles, harnessing the power of the vortex effectively requires care, knowledge and expertise.

As it uses no power other than the energy of the water itself, vortex technology is inherently sustainable. It therefore feels like a very contemporary and unconventional solution, although in fact its use can be traced back through history.

History

In the UK, vortex flow control technology was first harnessed in the mid-20th Century to control and dissipate the energy of water dropping from high-level drains into deep-drop sewers.

Following on from the Drop-Shaft innovations, the first Hydro-Brake® Flow Controls were designed and developed in the 1970s and even featured on the Tomorrow’s World programme in 1983, providing a glimpse of the future of sustainable drainage design.

Today vortex technology is used in thousands of drainage and sewerage applications all over the world. It also provides the basis for hydrodynamic separation of silts, oils and pollutants from stormwater and of solids separation solutions in sewerage treatment.

In the UK, new National Standards for Sustainable Drainage Systems (SuDS) will place increased expectations for controlling the flow and quantity of surface water in new developments. Vortex technology provides the perfect solution – but its design and specification need careful consideration to meet the required standards effectively.

It’s no secret that many vortex flow controls on the market are based on Hydro-Brake® technology. The name ‘Hydro-Brake’ has become a generic term – rather like the ‘Hoover’ to vacuum cleaners, or ‘Biro’ to ballpoint pens. The specification of a ‘Hydro-Brake or equivalent’ is standard practice to designers using industry-standard modelling software packages.

Imitation may be a sincere form of flattery, but in the case of vortex technology substituting one product with another could lead to disaster. Whilst the technology may appear simple and elegant, the differences in engineering are significant. The choices made by designers and specifiers of flow controls have a huge impact on achieving effective flood prevention, as well as on the installation and lifetime costs of a project.

How does it work?

The internal geometry of a Hydro-Brake® Flow Control is designed to enable water to flow unrestricted through it for as long as possible. When the water upstream reaches a pre-determined height, for example in a flood situation, a vortex is triggered in the flow. The vortex creates a core of air in the centre, throttling back the water, and releasing it at a measured, controlled rate.

Compared with conventional technologies such as an orifice plate, penstock or slide gate valve, the flow of water out of a vortex flow control has much less energy per unit of cross-sectional area. It is therefore, much less likely to cause scouring or physical damage to downstream structures, protecting sensitive wetlands, ponds, basins or watercourses, even preventing damage to sewer infrastructure.

Storage savings achieved with vortex flow control

Bringing water quality back under control not only combats flooding, also but facilitates effective stormwater treatment practices. The reduction of peak flows causes less of a short-term shock pollutant load to the receiving waters and allows increased dilution.

New technology standard

Now developments in vortex flow control technology have enabled new standards in design versatility to be reached, which can help designers achieve significant construction cost savings for their clients.

Flow controls have three basic elements: the inlet, outlet and the volute (the actual housing of the device which can either be ‘snail shaped’ or ‘cone shaped’). Traditionally there was a fixed relationship between these three components, with some models allowing a small level of sophistication by allowing a minor adjustment in the inlet or outlet.

Hydro-Brake Optimum

Now in the Hydro-Brake Optimum all three elements are independently configurable, allowing engineers complete freedom to design each unit for absolute fit and to balance flow rates and surface water storage requirements to suit each drainage project. The result is optimised hydraulic efficiency and a storage saving of up to 15% compared with earlier technology, or alternative devices.


Seeing beauty and elegance in natural patterns and processes is a fundamental human pleasure. We have an admiration for the simple and perfect way things work and an enthusiasm to capture and replicate them.

The beauty of a vortex

The vortex is a particular object of fascination for those of us involved in design or engineering, because of its simplicity and power. Leonardo Da Vinci once said: 'simplicity is the ultimate sophistication' - and simplicity can take a lot of hard work for designers to achieve. Despite its elegant principles, harnessing the power of the vortex effectively requires care, knowledge and expertise.

As it uses no power other than the energy of the water itself, vortex technology is inherently sustainable. It therefore feels like a very contemporary and unconventional solution, although in fact its use can be traced back through history.

History

In the UK, vortex flow control technology was first harnessed in the mid-20th Century to control and dissipate the energy of water dropping from high-level drains into deep-drop sewers.

Following on from the Drop-Shaft innovations, the first Hydro-Brake® Flow Controls were designed and developed in the 1970s and even featured on the Tomorrow’s World programme in 1983, providing a glimpse of the future of sustainable drainage design.

Today vortex technology is used in thousands of drainage and sewerage applications all over the world. It also provides the basis for hydrodynamic separation of silts, oils and pollutants from stormwater and of solids separation solutions in sewerage treatment.

In the UK, new National Standards for Sustainable Drainage Systems (SuDS) will place increased expectations for controlling the flow and quantity of surface water in new developments. Vortex technology provides the perfect solution – but its design and specification need careful consideration to meet the required standards effectively.

It’s no secret that many vortex flow controls on the market are based on Hydro-Brake® technology. The name ‘Hydro-Brake’ has become a generic term – rather like the ‘Hoover’ to vacuum cleaners, or ‘Biro’ to ballpoint pens. The specification of a ‘Hydro-Brake or equivalent’ is standard practice to designers using industry-standard modelling software packages.

Imitation may be a sincere form of flattery, but in the case of vortex technology substituting one product with another could lead to disaster. Whilst the technology may appear simple and elegant, the differences in engineering are significant. The choices made by designers and specifiers of flow controls have a huge impact on achieving effective flood prevention, as well as on the installation and lifetime costs of a project.

How does it work?

The internal geometry of a Hydro-Brake® Flow Control is designed to enable water to flow unrestricted through it for as long as possible. When the water upstream reaches a pre-determined height, for example in a flood situation, a vortex is triggered in the flow. The vortex creates a core of air in the centre, throttling back the water, and releasing it at a measured, controlled rate.

Compared with conventional technologies such as an orifice plate, penstock or slide gate valve, the flow of water out of a vortex flow control has much less energy per unit of cross-sectional area. It is therefore, much less likely to cause scouring or physical damage to downstream structures, protecting sensitive wetlands, ponds, basins or watercourses, even preventing damage to sewer infrastructure.

Storage savings achieved with vortex flow control

Bringing water quality back under control not only combats flooding, also but facilitates effective stormwater treatment practices. The reduction of peak flows causes less of a short-term shock pollutant load to the receiving waters and allows increased dilution.

New technology standard

Now developments in vortex flow control technology have enabled new standards in design versatility to be reached, which can help designers achieve significant construction cost savings for their clients.

Flow controls have three basic elements: the inlet, outlet and the volute (the actual housing of the device which can either be ‘snail shaped’ or ‘cone shaped’). Traditionally there was a fixed relationship between these three components, with some models allowing a small level of sophistication by allowing a minor adjustment in the inlet or outlet.

Hydro-Brake Optimum

Now in the Hydro-Brake Optimum all three elements are independently configurable, allowing engineers complete freedom to design each unit for absolute fit and to balance flow rates and surface water storage requirements to suit each drainage project. The result is optimised hydraulic efficiency and a storage saving of up to 15% compared with earlier technology, or alternative devices.


Interested in this article?
Call 01275 878371
OR
 
 
 
Enquire
 


Also by Hydro International

Hydro International address and contact details

Hydro International
Shearwater House
Clevedon Hall Estate
Victoria Road
Clevedon
BS21 7RD
Tel: 01275 878371
Fax: 01275 874979
View on map - 2 addresses
 
Follow Hydro International
 

Ask Hydro International about

The beauty of vortex flow control technology